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Approximate equations are derived for small unsteady perturbations of a constant 
sonic stream and of quiescent gas. These equations, unlike the equation used for 
defining unstable transonic flows of gas, provide a correct definition of perturba- 
tion propagation from a point source in all directions [1]. 

1. Let us consider potential flows of perfect gas. Such flows are defined by the equa- 
tion 

(4h -4- V~)t + ~ 2 ~ x x  4- ~ 2 ~  4- ~ . - ~ z ,  + 2 ~ x ~ u ~ x .  + (1. 1) 

2 ~ z ~ =  + 2~uOz~w = a ~ ( @ ~  + ¢Dy~ -4- ~, , )  

t 2 a2~ .px_ l~p (x_ l ) /×_~  u+t2  (~¢-- t ) (  * t 4 -  T V ) 

V = (O~ ~ + Ov ~ 4- Oz2) '/' 
where ~ ,  x, y, z, t, V, a, P and p are, respectively, the dimensionless velocity pe- 
tential, Cartesian coordinates, time, velocity of gas, speed of sound, pressure and density 
(related, respectively, to a,*to, a . to ,  to, a . ,  P .  and p . ,  where the asterisk denotes 
parameters of the sonic stream u = ~ , ,  = a ,  and Ou = 0). 

Let us consider transonic flows of gas. for which it is possible to use the linear theory 

(I9 : X 4- "~(I) 1 4- ~2(I)2 4- . . . ,  (I)ltt 4- 2fl)lxt = (~}lYl/ 4- ( ~ l z z  (1 .2)  

However the linear theory has some shortcomings. The linear expansion (1. 2) contains 
various irregularity regions for which the order of the second term ~ 2 ~  is the same 
as of the first ~tD x. 

As an example, we present two such expansions for one-dimensional flows 

* =-- x 4- 7 ~  (v) 4- 7 '  [ ~¢+1 ] s ~ "  (v) x 4- ~(v)  + . . . ,  (1.3) 

~---- 2 t - - x  

¢ (1.4) 
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These expansions determine the flow in a channel induced by a piston whose motion in 
a supersonic stream is defined by x = t q- 7hl  (t) ~- . . . .  as weU as for smaU pertur- 
bation~ in a quiescent gas ( [2], p. 247) 

=~'~tq-~'~q-. . . ,  Ot(x,t)=a --7--t+x + 

for which in (1.2) in solutions for (I)9 and (I) 1 = ez 1 (x) + ~t (v) only functions depen- 
dent on v are retained in the case of (1. 3)((I)~ = ~1 is the departing wave), and on x 
in the case o f (1 .4 )  ( ~ t  = exx is the oncoming wave). Functions <zhand ~h are deter- 
mined by conditions at the piston. 

Expansions (1.3) and ( 1 . 4 ) b e c o m e  irregular for v N t and x N t / 7  ,and for x .~ t 
and v N t / 7  , respectively. It can be readily shown that for considerable times t ~.  i / 7  
in the neighborhood of shock waves, which in the first approximation coincide with the 
characteristics, x = 2 t  -q- 7xt  (t) in the case of (1 .  3) (propagation downstream in a 
sonic flow) and x == ~,x t (t) -q- ... in the case of (1 .4) (propaga t ion  upstream). 

Note that by substituting i n ( L 3 )  and (1.4)  the variables ~t, ~ ,  x = P~t  ~- q~2, 
v = l~ 1 -~- mg~ with ql =~= pro, for the variables x and v it is possible to rewrite ex- 
pansions (1. 3) and (1. 4) in such form that their irregularity occurs for ~k = st / 7,  
1~1 -~- m ~  = 01 and ~h = s ~ / 7 ,  P~t  -f- q~2 =0$ , r e spec t i ve ly  (in particular for 
considerable times t --- i / 7 and ~t ""  i / 7,  m = - - q  , or for ~ ~.. t / 7, .l = 
- - p ) .  In the above formulas 7 ~--~ i ;  sk and 0kate variables of order unity, and ~his 
one of the variables ~1 or ~2- This is taken into account in the selection and extension 
of variables in the course of equation derivation for two- and three-dimensional pertur- 
bations. 

The anaysis of the flow in the irregularity regions of expansions (1.3) and (1.4) neces- 
sitates the introduction of the following expansions: 

= z + ~ t  (sh, 0~) + 7 ~ $  (sk, 0~) + ... (1. 5) 

The equation for ~x and the general solution of these equations are readily obtained by 
substituting (1.5)  into (1. 1). A uniformly suitable solution is then obtained by joining 
~ t  with the linear solution (I) = oq (x) q-  [~t (v) by the method of merging asympto- 
tic expansions [2, 3].  A typical  form of equations for ~1 is provided, for instance, by the 
following equation obtained for ~t - x = 7-1s and 01 = v = 2t  - -  x • 

2 .  Using the results obtained for one-dimensional flows, we obtain for two- and three- 
dimensional perturbations such nonlinear equations that, in the case of one-dimensionai 
flow could be joined for (I) 1 = (1) t (x, t) with the solution of Eq. (1.2). One of such 
equations is evidently the equation which in the one-dimensional case consists of terms 
~ and ~ (taking into account the note on the form of variables for one-dimen-  

sional expansions, we introduce here [ = dx -t- bt and ~1 : k x  ~, nt) and contains 
besides these terms with derivatives with respect to y and z. In the general case this 
requirement yields the expansion (2.1) 
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y = e/,8-':,y °, z = ~,/~-,/.~, z ~, 6/~ ~ i 

where 6 and e are some constant positive parameters whose order of magnitude deter- 
mines various regions of flow, and ~o, ~1o, yO and z ° are new variables of order unity. 
Substituting (2.1)  into (1. 1) and using the condition of nontriviality of the equation for 
~0, we obtain that b ~ - - 2 d  or b --~ 0. For ~0 we have the equation 

2 (bn + dn -4- b k ) ~  -4- (× -4-4- t ) #  (b -4- d ) ~  = ~p~ -4- ~zz (2.2)  

where the superscript ° at variables is omitted and the notation ~00 = ~ is used here 
and henceforth. 

Specifying the equation of the sonic surface (a ~ = V ~) in the form 
o o  f lo 

~ : s ~ k ( ~ l ° , y ° , z ° ) ( + )  ~, ~ o =  ~kOiO,  yO, z o) (2.8) 
k--~O k=O 

for the determination of function ~o _-- ~0 01 °, Y°, z°) in the first approximation we 

obtain the equation ~ ([0, ~1, Y, z) = 0. 
Let us derive approximate conditions at the shock wave, which for the normal and 

tangent velocity components at transition through the wave front are of the form 

× - - t  2 a .2 ,  V , = V ~ *  (2.4)  (U - -  V. )  (U - -  V.*)  = ~ (U - -  V.*)  ~ -4- 

where U is the shock wave velocity along the normal to the wave front, Vn and V= 
are the gas velocity components normal to the wave front, and an asterisk superscript 
denotes flow ahead of the shock wave. The speed of sound a* is determined by the 
second of formulas (1. 1) with ~) ~ (I)*. Defining the shock wave in the form (2.3)  
and substituting (2.1) and (2.3)  into (2.4)  in the first approximation for ~o _-: ~0 (T] °, 
yO, z o) we obtain 

2 (bn _t_ dn + bk) ~_~ _4_ (O_~y ) '  + ( ~z )2 = (2.5) 
d2 

- ~ - ( b + d ) ( u + l ) ( ~ p ~ + ~ * ) ,  ¢ = - * *  

where tim superscript ° has been omitted. 
Functions ~ and ~*and  their derivatives in (2.5)  are taken for ~ = ~-0. If  ~*  ~-  ~P, 

then (2.5)  is the equation of  characteristics for (2. 2). 
Let us con~der the problem of selecting comtants k and n (~ = kx -4- nt). For thi"s 

we, first, determine the shape of the perturbation front originating at point x = y = 0 
for t ---- 0 in a uniform transonic stream ~ *  = o)~. For simplicity we consider a plane 
flow. We substitute ~ *  ~--- ~ = (o~ into (2.5) and obtain for the derived equation the 
solution 

~=ATI-4-By2~I -i, A =  (×+t)d~(b+d)°) (2 .6)  
2 (bn + dn + bk) 

2B = bn + dn + bk =/= O 

passing to physical variables x,  y, t we obtain (2.6) in the form 

(dk --  rka)x ~ -4- (dn -4- bk --  2rkn)xt -4- (bn --  rn~)t ~ -- By 2 (2.7)  

r = ~ - A  

Let us, first, set in (2 .7)  d = n = t and b = k ---- 0. These variables were used un- 
til now in investigations of the nonlinear transonic equation [1]. This leads to the known 
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conclusion that the perturbation propagation is defined by parabola [1] 

0) _~6 t " I '~-i x = / ( y , t ) = - ~ - ( × 4 - 1 )  e 4 - - - ~ - y t  

which means that the perturbation propagates downstream at infinite velocity, and in 
addition t = cons t  is a characteristic for (2 .2)  [1], These two features represent a con- 
siderable shortcoming of Eqs. (2.2) and (2.5)  represented in terms of variables x, y, z, 
t. R can be readily shown that then function x = / (y, t) is the first term of expansion 

in terms of  the small parameter 5 / e of the function that determines the exact  pertm- 
bation boundary, which in this case is a circle. 

We require the curve (2.7) to be a circle for o) = 0 , which is reasonable, since for 
o) = 0 or 5 / e = 0 we have , in  accordance with (2 .1) , the  exact  solution of theexact  
equation (1. 1) (1) = x. This requirement leads to the condition that n = - - 2 k  when 
b = 0, and n = 0 if b = - - 2 d .  The equation of the line of perturbation originating 
at p o i n t x =  y = 0  for t =  0 is of the form ( x - -  t) s 4 -  ge = t 2 , w h i c h i s a n e x _  
panding circle carried downstream by the sonic flow. 

If  in (2.7)  o) 4= 0, we have an ellipse that differs slightly (by a quantity of order 
(5 / e) from that circle.  For a three-dimensional flow the perturbation boundary is de- 
fined by surface ~ = AM + B~1-1 (Y~ + ze). If o) = 0, that surface is a sphere 
(x - -  t) ~ -~ Y*" 4- z e = t e- Thus it is necessary to set in (2. 1) ~ = dx,  rl = k (x  - -  

2 0 or q = k x ,  ~ = d (x  - -  2t) .  In that case t = cons t  is no longer a character-  
istic, the latter being defined by x = cons t  or x - -  2 t  = cons t .  Note that in the one- 
dimensional nonlinear theory both these shortcomings are absent, hence it is possible to 
use any variables. 

Let us ~smme that in Eq. (2.2) coefficients C --= (× 4- l ) a  ~ (b -~ d) and 2B 
bn -b dn  -I- bk  do not vanish. We pass in (2. 2) and (2.5) to the new variables 0 
~l / ( 2B) ,  ~ = C~), 112"* =- C * * .  The solution that defines the flow in the parturbation 
region (and satisfies the conditions of continuity of velocity components at transition 
through the perturbation boundary) can be written as 

~2 ~2 y2~. ~2 y2 ~ 
~ ' : - - 2 ~ - } - ' 2 0  202 -~ 4 0 -~-8-~ '  ~ - - - C 0 )  

Finally, let us obtain approximate conditions at the inpenetrable surface. Specifying 
the latter in the form oo oo 

y = 

where Yo = eons t ,  and substituting (2.1)  and (2.8) into the exact  condition of impe-  
netrability 

Og Oy 

in the first approximation we obtain 

(b 4- d)O/o (~, ~1, z) / O~ = ~p~ (go, ~, ~, z), b 4 :  - - d  (2.9)  

where the superscript is omitted. 
Similar results am valid for small perturbations in a quiescent gas, Seeking the solu- 

tion of Eqs. (1. 1) and (2. 4) ,expres~d in terms of dimensionless variables (instead of 
P . ,  p .  and a ,  we use parameters Po,  P0 and ao = ]/-(~ 4- i )  / 2 a .  of the quies- 
cent gas), in the form (2.1)  and (2.3)  and rejecting in (2.1) the term x in the expression 
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for 'I} , in the first approximation we obtain 

b = _+_d, 2 (bn --  d k ) , ~  + (× + l ) b d ~ , . ~  = ~ , ,  + , ~  (2.10)  

2 (bn --  ak) ~ + ( °5° ! + ~-~-z{ °S° ) '  -- x + t 2  bd* (4~ + *~ *)' 4 = 4 *  

For conditiom at the shock front we use functions for ~ = t0. The condition of im-  
penetrability at the surface (2.8)  for y ----- Y0 (b =~= 0) is bO]o / O~ = 4v.  By speci- 
fying for the perturbation front originating in a quiescent gas (4~ = 4~* ---- 0) the form 
of circle x ~ -~- y2 __ t 2 (or of sphere x ~ + ys _~_ z2 = t~), we find that n = ~ k, 

hence ~ = d (x - -+ : t )  and ~l = k ( x - T t ) .  
Thus for deriving the nonlinear equations for small unstable two- and throe-dimen-  

sional perturbations of a sonic stream or in a quiescent gas it is necessary to use the char- 
acteristic variables of the related linear equations of one-dimensional flows. Although 
equations in terrm of other variables can evidently be used, care must be taken to inter- 
pret these correctly. In particular, they can be used for defining flows whose unsteadiness 
becomes apparent only in the second approximation. Note that all solutions of the tran- 
sonic equation in variables x and t [1] can be rewritten for Eqs. (2. 2) and (2.10),  by 
reducing these beforehand to the form appearing in [1]. This applies also to transforma- 
tions that do not alter the form of the transonic equation (e. g. of that appearing in [4]) 
as well as the form of 'conditions at the shock front (or at a characteristic). Finally, a 
theorem of uniqueness, similar to that in [4] can be formulated for these equations. 
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A generalization is given of the problem on the impression of a circular stamp 
when the elastic stamp makes contact  with an unbounded elastic layer. Appli- 
cation of the Hankel integral transform in the region of the layer and the pro- 
perties of generalized orthogonality of eigenfunctions in the region of  the cir- 
cular cylinder (stamp) permits reducing the problem to an infinite system of 


